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A B S T R A C T   

Objective: To link changes in the B-cell transcriptome from systemic lupus erythematosus (SLE) patients with 
those in their macroenvironment, including cellular and fluidic components. 
Methods: Analysis was performed on 363 patients and 508 controls, encompassing transcriptomics, metab
olomics, and clinical data. B-cell and whole-blood transcriptomes were analysed using DESeq and GSEA. Plasma 
and urine metabolomics peak changes were quantified and annotated using Ceu Mass Mediator database. 
Common sources of variation were identified using MOFA integration analysis. 
Results: Cellular macroenvironment was enriched in cytokines, stress responses, lipidic synthesis/mobility 
pathways and nucleotide degradation. B cells shared these pathways, except nucleotide degradation diverted to 
nucleotide salvage pathway, and distinct glycosylation, LPA receptors and Schlafen proteins. 
Conclusions: B cells showed metabolic changes shared with their macroenvironment and unique changes directly 
or indirectly induced by IFN-α signalling. This study underscores the importance of understanding the interplay 
between B cells and their macroenvironment in SLE pathology.   

1. Introduction 

B cells are immune cells specialised in the production and secretion 
of antibodies against pathogens and cancer cells. In systemic lupus er
ythematosus (SLE), after the loss of tolerance, B cells become autor
eactive and develop antibodies that target and destroy cells and tissues. 
This causes a periodic inflammatory reaction and tissue necrosis in 
specific areas, denoting an active disease status known as “flare” [1]. 
The peculiar autoantibodies primarily target nuclear structures as well 
as antigens related to other structures and functions [2]. B cells also 
contribute to the SLE disease through cell-to-cell contact, production of 
inflammatory cytokines [3], and due to defective IL-10-producing B cells 
unable to dampen inflammation [4]. Thus, interferon (IFN)-α expression 

is correlated with SLE severity and is used to classify patients [5]. The 
majority of the studies to detect novel disease markers and treatments 
for SLE focussed on single omics approaches in combination with clin
ical data. A step further was made with the IMI PRECISESADS project 
aiming to characterize autoimmune diseases based on a multi-omics 
approach, providing a wide vision of the disease changes in tran
scriptomics, metabolomics and clinics [6,7]. The present work investi
gated the changes occurring in the blood macroenvironment of patients 
with SLE from PRECISESADS and examined how these changes affect 
the transcriptome of B cells. Moreover, blood metabolites such as nu
trients and signalling molecules shape the natural macroenvironment in 
which mature B cells perform their physiological functions [5,8]. Plasma 
and urine contain the metabolites circulating in the bloodstream and the 
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metabolites actively removed from it, respectively. They were therefore 
used to analyse the blood macroenvironment. Another approach in
cludes whole-blood transcriptome analysis, which approximates the 
global gene expression changes among the immune cell types. The 
overlap between the transcriptome and metabolome defines the blood 
macroenvironment. Changes in the B-cell transcriptome were linked to 
the macroenvironmental changes, and validated by comparing the re
sults with a previously published database used as a validation dataset 
matching for study design, technology and samples, including the B-cell 
transcriptome from SLE patients and healthy controls (CTRL) [9]. Dif
ferences in B cells in IFN-α-positive and IFN-α-negative SLE subgroups 
were investigated, approving the results by comparison with the vali
dation dataset and by machine learning approaches. Finally, the 
metabolomics and transcriptomics analyses were integrated to identify 
not only the common Multi Omics Factor analysis (MOFA) factors dis
tinguishing patients with SLE from CTRLs but also the genes and mass 
spectrometry peaks primarily contributing to them. Overall, their con
tributions together with the clinical data have led to innovations in 
elucidating the underlying biological processes involved in SLE. 

2. Material and methods 

2.1. Samples and cohort selection 

The cross-sectional dataset from the European PRECISESADS cohort 
(number NCT02890121 in ClinicalTrials.gov) aimed to reclassify the 
autoimmune diseases by the molecular signature including clinical 
(Table S1) and multi-omics information. The patient selection and 
quality control have previously been described in detail [6,7]. PRE
CISESADS adhered to the standards set by International Conference on 
Harmonization and Good Clinical Practice (ICH- GCP), and to the ethical 

principles written in the Declaration of Helsinki (2013). Each patient 
signed an informed consent prior to study inclusion. The Ethical Review 
Boards of the 19 participating institutions approved the protocol of the 
cross-sectional study. This study was a pre-planned substudy to be 
specifically conducted in the SLE population, defined by the American 
College of Rheumatology of 1997 criteria [10] and fulfilling the CON
SORT statements (Supplementary data). In brief, whole blood samples 
from the SLE (n = 363) and CTRL (n = 508) groups were divided into 
two aliquots: the first contained all immune cell types, and the second 

was partitioned for supplementary analysis. Purified B lymphocytes 
were isolated from a fraction of the second aliquot (36 SLE and 27 CTRL; 
Table 1 and Fig. S1). Moreover, 101 paired samples of plasma and urine 
were collected (46 SLE and 55 CTRL). 

2.2. Transcriptome data generation 

The whole blood and sorted B cell samples were sequenced using a 
Novaseq 5000 and a NextSeq 500, respectively, with an average 
coverage per sample of 13.6 Million reads for the former and 29.3 
Million reads for the latter. The FastQ files were aligned to the UCSC 
Homo sapiens reference genome (hg19) and annotated to GENCODE 19 
with STAR v2.5.2 [11] using two-pass mapping strategy with default 
parameters. Gene quantification was performed using RSEM v1.2.31 
[12]. At the end, 363 SLE and 508 CTRL whole-blood transcriptomes 
and 36 SLE and 27 CTRL B-cell transcriptomes were profiled (Table 1). A 
validation dataset was downloaded from the GEO database 
(GSE149050). It contains the B-cell transcriptomes from 24 CTRLs and 
64 patients with SLE, including 30 IFN-α-positive and 34 IFN-α-negative 
patients. The validation dataset patients and PRECISESADS dataset pa
tients were matched for treatments and percentage of patients taking 
treatments. 

2.3. Analysis of B-cell purity 

B-cells were sorted by CD19 positive selection (Miltenyi) and the 
purity checked by flow cytometry. After extraction, the B-cell RNA pu
rity of SLE and CTRL samples was evaluated using two tools based on 
immune cell-specific gene signatures, Macroenvironment Cell 
Populations-counter [13] on R with default parameters and CIBER
SORTx [14] (leukocyte panel LM22; online version, https://cibersortx.st 
anford.edu/). Samples with digital purity lower than 90% were excluded 
from the subsequent analysis. The final number of samples included 29 
SLE and 22 CTRL samples (Table 2). 

2.4. IFN-α classification in whole-blood and B-cell samples 

Patients with SLE were classified into IFN-α-positive and IFN- 
α-negative subgroups using an IFN-α score established based on the 
Kirou score [15] approach. This approach measures the IFN-α response 
using the transcriptome of 20 genes [7] (SIGLEC1, IFIT3, IFI6, LY6E, 
MX1, USP18, OAS3, IFI44L, OAS2, IFIT1, EPSTI1, ISG15, RSAD2, HERC5, 
OAS1, IFI44, SPATS2L, PLSCR1, IFI27, and RTP4) in addition to six IFN- 
α-associated genes (EIF2AK2, GBP1, IRF1, SERPING1, CXCL10, 
FCGR1A). Gene expression levels were quantified in terms of raw reads 
normalised to the total number per sample, and the score was calculated 
as the expression of each gene (g) for each SLE sample (s) with the mean 
expression divided by the standard deviation of the CTRLs as follows:  

The higher the Z interferon activity score (Z-score) for a particular 
gene compared to the CTRLs, the higher the IFN-α activation of that 
gene. By means of the Z-score, samples were grouped using the hierar
chical clustering of the Complexheatmap package v2.12.0 [16] on R. 
This showed two subgroups of 22 IFN-α-positive and 7 IFN-α-negative 
purified B-cell samples (Fig. 1A). Two CTRLs showed a high IFN score in 
B cells and were excluded from further analyses (Table 2). Similarly, SLE 
whole-blood samples were classified into 269 IFN-α-positive and 94 IFN- 
α-negative samples. 

Table 1 
Number of samples available in the study.  

Samples B-cell 
transcriptome 

Whole-blood 
transcriptome 

Plasma 
metabolome 

Urine 
metabolome 

CTRL 27 508 55 55 
SLE 36 363 46 46 
CTRL 

integrated 
with 
MOFA 

22 46 55 55 

SLE 
integrated 
with 
MOFA 

11 35 46 46 

Number of systemic lupus erythematosus (SLE) and control (CTRL) samples from 
the PRECISESADS cohorts are indicated. Number of samples shared between the 
transcriptomic and metabolomic analyses in the MOFA integration analysis are 
also indicated. 

Zinterferonactivityscore =
geneexpressiongs − mean(geneexpressionCTRLpopulation)

standarddeviation(geneexpressionCTRLpopulation)
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Table 2 
B-cell samples from systemic lupus erythematosus and controls of the PRECISESADS cohorts were discarded from further analysis based on the criteria used to extract 
those filtered.  

Individuals Unfiltered 
samples 

B cells with digital purity <
90% in MCP 

B cell < 90% purity/high specific cell type 
contamination in Cibersort 

IFN-α-positive CTRL 
samples 

Total filtered 
samples 

CTRL 27 samples 3 samples  2 samples 22 samples 
total SLE 36 samples 6 samples 1 sample  29 samples 
IFN-α-positive 

SLE 
25 samples 2 samples 1 sample  22 samples 

IFN-α-negative 
SLE 

11 samples 4 samples   7 samples 

CTRL: controls; MCP: Microenvironment Cell Populations; SLE: systemic lupus erythematosus. 

Fig. 1. Classification of systemic lupus erythematosus (SLE) samples based on the Z-score of the 26 interferon (IFN) genes and Cellular and Fluidic environment 
changes. A) SLE and control (CTRL) unfiltered samples are indicated at the bottom of the heatmap. The classification into positive and negative samples was obtained 
by hierarchical clustering based on the Z-score of the 26 IFN-α genes measured for each gene within each sample. A single square corresponds to the Z-score of a 
specific IFN-α gene for an individual sample. Euclidean distance and Ward’s method have been used for hierarchical clustering. B) Volcano plot of the differential 
gene expression (DGE) analysis of the CTRL samples vs patients with SLE in the PRECISESADS whole blood dataset. Downregulated and upregulated genes are 
depicted in blue and red, respectively. Only the top 15 genes in each category are indicated. The significance thresholds, shown as red lines, are |Log2FC| > 0.5 and 
false discovery rate (FDR) < 0.05C) Gene set enrichment analysis (GSEA) of the whole-blood transcriptome using the gene ontology (GO) and Reactome libraries. The 
categories of metabolic pathways and their adjusted p-values for each GO pathway are depicted. D) Levels of metabolites in plasma and urine of CTRL and SLE 
samples are depicted in blue and red, respectively. Significance was calculated using the Mann-Whitney test. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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2.5. Differential gene expression analysis 

All differential gene expression (DGE) analyses provided raw gene 
counts as input for DESeq2 [17], used with default parameters. Sex and 
age were included in the model as confounding factors. Although pre
sent in all subgroups, the treatments were not included because of their 
heterogeneity and variable co-administration with other drugs and 
medications. The threshold values to identify the DEGs were set to | 
Log2FC| >0.5 and false discovery rate (FDR) <0.05. Nominal p-values 
were adjusted for multiple testing using the FDR method. 

2.6. Gene set enrichment analysis 

The gene set enrichment analysis was performed using GSEA [18] 
v4.1.0 for the Linux system. The matrix counts were uploaded directly 
into GSEA, and the libraries explored included Reactome v.2022.1 and 
Biological Processes (BP) v.2022.1. The EnrichR [19] tool v2022 was 
also used, uploading the genes identified as upregulated and down
regulated in the DGE analysis separately. For both, only processes with a 
Benjamini–Hochberg adjusted p-value <0.05 were considered. 

2.7. Metabolomics data generation and statistical analysis 

Metabolomics data were pre-processed according to the protocol 
described in previous PRECISESADS study [7]. In total, 531 and 1022 
peak intensities were identified in plasma and urine samples, respec
tively, and compared between the SLE and CTRL groups. The log2FC 
value was calculated as the log2 of the ratio between the median peak 
signals in SLE and in CTRL for each peak. The p-value was estimated 
using the non-parametric Mann-Whitney test and corrected using the 
FDR method. Metabolites with a statistically significant difference (FDR 
< 0.05) were used for further analysis. When comparing groups divided 
according to sex and age (younger than 35 – between 35 and 50 – and 
older than 50), all peaks were not significantly different, excluding a 
significant contribution of these confounding factors. Although present 
in all subgroups, the treatments were not tested because of their het
erogeneity and variable co-administration with other medications. 

2.8. Metabolomics peak annotation 

The plasma and urine peaks were annotated using the Ceu Mass 
Mediator tool [20] in the CMMR R package [21]. The data used included 
the mass-to-charge (m/z) ratio and retention time (rt). The metabolites 
were filtered by those identified or predicted according to the Human 
Metabolome Database (HMDB) [22]. The MS/MS data, when available, 
were analysed using GNPS [23], and the results matched with those 
obtained with only m/z and rt. 

2.9. Machine learning validation 

The extreme gradient boosting model (XGBoost) based on the 
random forest machine learning method was performed on CTRL and 
IFN-α-positive SLE B cells from the PRECISESADS and the validation 
datasets, training the model with seven-eighths of the samples and 
testing with the remaining. The xgboost package on R was used setting 
as parameters max_depth = 3, eta = 0.1, gamma = 0, min_child_weight 
= 1. The genes in the model came from the GSEA gene sets. 

2.10. Multi-omics factor analysis 

MOFA+ is an integration method catching the common variability 
among the datasets provided as input. MOFA calculates factors made up 
of a linear combination of the multi-omics variables and selects the most 
relevant contributors after discarding the not relevant ones by regula
rization. It provides a few easily interpretable factors due to the limited 
number of contributors to explore, compared to other dimension 

reduction methods as principal component analysis. Its application in 
public datasets can dig deeper into the data compared to conventional 
statistical analysis in any field. The only requirement is to have mul
tiomics data from the same samples or patients. MOFA [24] was used 
according to the developer’s instructions (https://biofam.github. 
io/MOFA2/), where further details about the algorithm are available. 
The transcriptome data from B cells and whole blood were transformed 
using the Variance Stabilising Transformation (VST) function in R to 
make the data approximately homoscedastic. To shrink the size of the 
matrices data, the top 5000 genes were selected, based on the highest 
variance obtained from the size factor normalised data. The plasma and 
urine metabolomics data were log-transformed to improve their 
Gaussian distribution. All peaks were included in the analysis. The 
number of samples used for MOFA is reported in Table 1. The number of 
MOFA factors was determined after the evaluation of the results, from 3 
to a maximum of 30, to avoid factor redundancy, as explained in the 
MOFA+ [24] instructions. The Factors 18 and 20 included at least three 
MOFA factors (Factor 2, 4, 5 and 9) with significant separation of SLE 
from CTRLs (Table S2). Factor 18, which showed the best separation 
(FDR-corrected Mann–Whitney test), was used for further analysis. In 
the MOFA factor exploration, only the top 5% genes/peaks with a higher 
contribution and a contribution weight > 0.50 were studied (Fig. S2). 
MOFA ran with default parameters and fast convergence. The factors 
were not correlated with each other, ensuring that the variability cached 
by the factors came from non-overlapping variations in genes or peaks. 

2.11. Clinical data analysis 

The 50 clinical features and 49 autoantibody measurements from the 
PRECISESADS dataset were analysed and correlated with significant 
Factors 2, 4, 5, and 9 of the MOFA analysis using Pearson correlation. 
The 157 binary clinical data points were analysed using the Wilcoxon 
test after dividing the groups into two categories. The nominal p-values 
were corrected using the Benjamini-Hochberg method. 

3. Results 

3.1. Exploration of the disease macroenvironment using transcriptomics 
and metabolomics 

The disease macroenvironment of SLE can be subdivided into a 
cellular macroenvironment—which includes the whole-blood tran
scriptome—and a fluidic macroenvironment— which includes the 
plasma and urine metabolome. Compared with CTRL, the DGE analysis 
of the whole-blood transcriptomic data highlighted 1232 upregulated 
and 359 downregulated genes. As expected, the top DEGs were com
ponents of the IFN response pathway (Fig. 1B). Moreover, GSEA iden
tified increased IFN-α, β, and γ activation and cytokine responses in the 
patients with SLE (Fig. 1C). In addition to Notch/Wnt signalling, the 
cellular stress response and fatty acid metabolism were increased, 
together with metabolomic processes involving dopamine, glucose 
import metabolism, protein glycosylation, and NAD+/nucleotide 
biosynthesis. For the 359 downregulated genes in SLE, no significant 
biological processes were identified. 

Regarding the fluidic macroenvironment, the hydroxychloroquine 
peak was significantly higher in both SLE plasma and urine analyses, 
which was expected because most patients (76.6%) received antima
larial drugs. Furthermore, upregulation of the peak signals annotated as 
indole-3-propionic acid/indole-3-methyl acetate and lysophospholipid 
compounds was found in the plasma, and peak signals with a signifi
cantly upregulated intensity including cytidine and 2’ Deoxyuridine 
were found in the urine (Fig. 1D and Table S3). These findings are 
consistent with the changes in nucleotide metabolism and cellular 
response to lipids observed in the whole-blood transcriptome. 
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3.2. Exploration of B cell characteristics 

The DGE analysis of the SLE B-cell transcriptome in comparison with 
CTRL revealed 87 upregulated and 7 downregulated genes (Fig. 2A). 
GSEA suggested activation of the interferon pathway and immune sys
tem, also identified in the EnrichR [18] analysis (results not shown). 
Among the upregulated genes, were identified thymidine phosphorylase 
(TYMP) and cytidine/uridine monophosphate kinase 2 (CMPK2) 
involved in the pyrimidine and purine salvage pathways, respectively. 
RSAD2, an enzyme involved in viral-induced nucleotide depletion (CTP, 
UTP) [25] was also detected. Furthermore, LPAR6 a gene encoding the 
lysophosphatidic acid (LPA) receptor and INPP1 a gene required for LPA 
signalling and synthesis [26] were revealed. Finally, the long noncoding 
RNA, LINC00487, was identified. No enrichment was detected for the 
downregulated genes. 

Differences in the whole-blood transcriptome between SLE and CTRL 
were compared with the changes found in the B-cell transcriptome. 
Overall, 65 upregulated and 3 downregulated genes were common in 
both DGE analyses. Interestingly, 22 genes were found upregulated and 
4 genes downregulated in B cell DGE analysis but not in whole-blood 
DGE analysis (Fig. 2B). For clarity purposes, these genes will be 
named “unshared” for the rest of the manuscript. Among the unshared 
upregulated genes, LPAR6 and INPP1 were identified, as well as 
GRAMD2B, MACROD2, and LINC00402, which are involved in autoim
munity [27]. Furthermore, Schlafen family members SLFN12L and 

SLFN5, and its anti-sense ENSG00000266947 were specifically high
lighted in SLE B cells. 

3.3. Induction of differential expression of B cell genes by interferon-α 

Because IFN-α drives key metabolic changes within the immune cells 
[28], patients were classified using IFN-α Z-score into IFN-α-positive and 
IFN-α-negative subgroups to examine how IFN-α regulates the unshared 
B cell characteristics in SLE. 

DGE analysis on 7 IFN-α-negative SLE compared to 22 CTRLs pro
vided only 2 genes differentially expressed, SIRPB1 (log2FC = 1.19 p. 
adj = 0.0023) and Y_RNA (log2FC = − 23.32 p.adj = 2.18e-06), where 
the latter was not relevant because only expressed in 5 CTRL samples. 

DGE analysis of the 22 IFN-α-positive SLE against the 22 CTRLs 
showed a total of 163 upregulated and 52 downregulated genes 
(Fig. 2C). As expected, GSEA highlighted interferon signalling pathways 
(GO:0034340; p.adj = 5.51e-04) and immune system processes 
(GO:0002702; p.adj = 0.0074) among the upregulated genes. Nucleo
tide catabolic processes (GO:0006213; p.adj = 0.044 and GO:0009151; 
p.adj = 0.022) were also enriched. Upregulation of the pyrimidine and 
purine salvage pathway genes TYMP, CMPK2, adenosine deaminase 
(ADA), and guanosine monophosphate reductase (GMPR) was observed. 
The urate transporter LGALS9, which removes nucleotide degradation 
metabolites, was also identified. Furthermore, RSAD2 together with 
glycosylation enzyme genes e.g. ST3GAL6, as hypothesized in other 

Fig. 2. Identification of unshared systemic lupus erythematosus (SLE) B cell characteristics and interferon (IFN)-α-positive SLE B cell features. A) Volcano plot of the 
differential gene expression (DGE) analysis of B cells of all patients with SLE vs control samples (CTRL) in the PRECISESADS dataset. The downregulated and 
upregulated genes are shown in blue and red, respectively. The top 25 upregulated and top 7 downregulated genes are indicated. The threshold of significances, 
represented as red lines, are |Log2FC| > 0.5 and p.adj < 0.05. B) UpSet plot shows a set size, from top to bottom, of the genes upregulated (UP) and downregulated 
(DOWN) in the whole blood (WHOLE_BLOOD), and those UP and DOWN in the SLE B cells (B_CELLS). The intersection size, from left to right, identified the shared 
UP genes, shared DOWN genes, unshared UP genes and unshared DOWN genes between whole blood and B cells. C) Volcano plot of the DGE analysis of B cells in IFN- 
α-positive patients with SLE vs CTRL samples in the PRECISESADS dataset. D) UpSet plot shows a set size, from top to bottom, of UP and DOWN genes in the IFN- 
α-positive SLE B cells (B_CELLS_POS), with 26 upregulated genes and 4 downregulated genes exclusive in all SLE B cells. The intersection size, from left to right, 
identified the shared UP genes, shared DOWN genes, unshared UP genes and unshared DOWN genes between IFN-α-positive SLE B cells and all B cells. E) Graphical 
representation of intra-cellular signalling and metabolism pathways and their connection in association with metabolic changes in the macroenvironment. Red 
arrows indicate an increase in whole blood transcriptomics, blue arrows an increase in B-cell transcriptomics and green arrows an increase in serum and urine 
metabolomics. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

C. Iperi et al.                                                                                                                                                                                                                                     



Clinical Immunology 264 (2024) 110243

6

publications [29] were detected. Lipidic uptake and mobility genes 
LDLR, APOL6, SLCO4C1, and ATP8A1 as well as genes encoding specific 
biosynthetic lipidic class enzymes (ALDH1A1, DGKH, and CERS6) were 
revealed. INPP1, MOXD1 involved in dopamine metabolism, and 
Schlafen family members SLFN12L and SLFN5 were also upregulated. 
The 52 downregulated genes were not enriched in any process. 

Of the 22 unshared upregulated genes in the entire SLE cohort, 17 
genes were common with the upregulated genes in IFN-α-positive pa
tients. Among them, IFITM2 and STAT4 induced by IFN-α, GRAMD2B, 
MACROD2, LINC00402, INPP1, SLFN5, BFSP2, EPB41L3, NOD2, PLCL1, 
RNF144A, STOM, and UBASH3B were identified. The remaining five 
(non-overlapping) upregulated genes were LPAR6, RCBTB2, SHLD2P3, 
UPF3AP2, and ENSG00000271127. Of the 4 unshared downregulated 
genes in the entire SLE cohort, KCNC4, RGPD8, and SGSM1 were shared, 
and KNDC1 was not shared (Fig. 2D). Findings in whole blood and B cells 
are summarized in Fig. 2E. 

3.4. Validation of total and unshared B cell characteristics in patients 

The DGE of the validation dataset revealed 428 upregulated and 144 
downregulated genes. The GSEA confirmed the activation of the IFN 
pathway and immune system as well as nucleoside metabolic processes. 
Consistent with the PRECISESADS dataset, no enrichment was detected 
for the set of downregulated genes. Sixty-three genes were found to be 
upregulated in both datasets, including nucleotide salvage pathway- 
related genes TYMP and CMPK2, and LPAR6, SLFN12L, SLFN5 and 
LINC00487, but none of the downregulated genes was validated (Fig. 
S3A). 

Of the 22 unshared genes upregulated in B cells from the PRE
CISESADS dataset (Fig. 2B), only 6 were validated: STAT4, LPAR6, 
SLFN5, NOD2, EPB41L3 and STOM. The differences in the DEGs between 
the PRECISESADS and the validation datasets may have arisen because 
of technical and biological consideration such as differences in library 
preparation, library type, sequencing depth or sample heterogeneity. 

Because the validation dataset also classifies the patients with SLE 
into IFN-α-positive and IFN-α-negative subgroups, a DGE analysis was 
performed. In total, 92 upregulated genes and one downregulated gene 
(EML6) were common with the PRECISESADS dataset (Fig. S3B). As 
expected, most of the upregulated validated genes (49 out of 92) were 
related to the IFN-α response. Finally, the nucleotide salvage pathway- 
related genes TYMP, CMPK2 and GMPR; the urate transporter LGALS9; 
and the LPA synthesis-related INPP1 were also identified. Additionally, 
the robustness of nucleotide salvage, dopamine, glycosylation and other 
pathways in classifying CTRL and IFN-α-positive SLE B cells were 
confirmed using the XGBoost machine learning method in both PRE
CISESADS and validation datasets (Fig. S4). 

3.5. Multi-omics systemic lupus erythematosus data integration 

MOFA is a multi-omics integration tool that facilitates the joint 
analysis of the different -omics layers, such as transcriptomics and 
metabolomics data (Fig. S5A) to identify the common sources of varia
tion among them, as explained in the material and methods. This 
approach identifies factors that separate patients with SLE from CTRL 
individuals and investigates the contributors of these factors to char
acterize their biological identity. Each factor highlights different altered 
processes in SLE, which here are split up to ease the understanding and 
the exploration of the disease. First, the model that identified 18 factors 
was confirmed to have the best performance in separating the SLE and 
CTRL samples (Fig. S5B). Because MOFA facilitates the analysis of the 
direct contribution of genes and metabolomic peaks to each factor, these 
factors can be characterised. The total metabolomic contribution was 
lower than the total transcriptomic contribution (Fig. 3A and Table S4). 
This may be because of the lower suitability of metabolomics data for 
linear models, higher noise in the data, or a reduced number of features 
(Fig. S5A). Nonetheless, unsupervised MOFA identified Factors 2, 4, 5, 

and 9 (Fig. 3B) as significant in discriminating patients with SLE from 
CTRLs, with Factor 4 performing better than others (Table S4 and 
Fig. 3C, D). For Factors 4 and 9, higher factor values were associated 
with SLE. Therefore, genes or metabolomic peaks positively contributing 
to these factors support the biological processes underlying the factors, 
whereas those that contribute negatively contradict these processes. In 
the case of Factors 2 and 5, patients with SLE present lower values than 
CTRLs, thus features contributing to the disease are negatively associ
ated with the factor. The identities of the contributors and the biological 
interpretation of the significant factors are reported in Table 3 and Table 
S5. 

To better understand the biological processes, the significant Factors 
2, 4, 5, and 9 were correlated with 49 autoantibodies, 50 clinical mea
surements and 157 other clinical variables and symptoms (Table S6). 
Factor 2 showed no association with any clinical feature except for a 
positive correlation with the age of SLE diagnosis. Factor 5 showed an 
association with puffy fingers. Factor 9 did not show any significant 
correlations. Factor 4 was positively correlated with ENA, U1 RNP, 
Ro52, Ro60, SSA, SM, Jo1, and SSB autoantibodies and with Kappa light 
chain fragments. Moreover, Factor 4 was positively correlated with the 
IFN-α Kirou score and IFN-induced cytokines IP 10, IL-1RA, and MCP2, 
with the exception of IL-1RII, which was negatively correlated. 

4. Discussion 

The present study aimed to provide an overview of the cellular 
macroenvironment, through analysis of the whole-blood transcriptome, 
and fluidic macroenvironment, thanks to analysis of plasma and urine 
metabolomics, of the SLE B cells that may contribute to their dysfunc
tion. The common changes in the SLE environment and B-cell tran
scriptome are summarized in Table 4. Although the SLE PRECISESADS 
cohort had a heterogeneous variety of co-administration of drugs, this 
work always granted group comparisons having similar percentages in 
treatments, where possible, focussing on the B cells (Table S7). This 
approach reduced the effect of drugs on the results. 

The whole-blood transcriptome describes the macroenvironment in 
patients with SLE in which the immune cells are affected by oxidative 
stress [37] and are forced to import [38] and synthesise lipids [39] to 
sustain the inflammation. The IFN-α and other cytokine signalling 
pathways are also activated, leading to an increased influx of and de
mand for glucose [40]. The DGE analysis between the CTRL and IFN- 
α-positive SLE samples showed that these processes are exacerbated, 
including NAD+ metabolism, the pentose phosphate pathway, and 
serine/aromatic amino acid metabolism (not shown). 

The transcriptome of B cells from IFN-α-negative patients with SLE 
did not differ from that of CTRL B cells, as observed in other studies [7], 
but supports the limited impact of the treatments in the data. On the 
other hand, the B-cell transcriptome from IFN-α-positive patients with 
SLE showed upregulated IFN and cytokine signatures, as expected, in 
addition to upregulated lipid synthesis and transport [41]. 

IFN-α-dependent tryptophan physiologically prevents viral prolifer
ation. It is mainly observed in the whole-blood transcriptome of IFN- 
α-positive patients with SLE, where it is driven by protein translation 
(WARS1), NAD+ (KYNU, IDO1, PITGS, NNMT, NMNAT2, NAMPT), 
indole derivatives (IL4I1 [42], AOC1, AOX1) and serotonin (MAOA) 
synthesis. This finding supports the enrichment of the serotonin meta
bolic pathway in IFN-α-positive patients observed in GSEA. 

Moreover, IFN-α induces a higher demand for nucleotides to sustain 
cell proliferation during infection, which is fulfilled through de novo 
synthesis [43]. To face high nucleotide consumption, the nucleotide 
salvage pathway is activated, recycling nucleotides and preventing 
excessive energy and time expenditure. Impairment of the nucleotide 
salvage pathway in lymphocytes leads to low survival and proliferation 
[44]. CMPK2 and TYMP, associated with the nucleotide salvage 
pathway, were upregulated in whole blood and B cells of patients, 
whereas ADA, GMPR, and LGALS9 were exclusively upregulated in SLE 
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Fig. 3. Identification of variation among multi-omics data from systemic lupus erythematosus (SLE) patients using Multi-Omics Factor Analysis (MOFA) factors. A) 
The violet scale represents the percentage of variance explained by MOFA factors within an -omics dataset (B-cell transcriptome, whole-blood transcriptome, plasma 
metabolome, and urine metabolome). The higher the percentage of variance explained among the -omics datasets, the higher the shared variability. B) Violin plot 
representing SLE (red) and control sample (CTRL; blue) distribution based on each MOFA factor’s value. C) Scatterplot of the top 9 genes contributing to Factor 4 in 
B-cell transcriptome (top left) and in whole-blood transcriptome (bottom left) and top 9 peaks contributing to Factor 4 in urine metabolome (top right) and in plasma 
metabolome (bottom right). D) Heatmaps using the top 20 genes in B-cell transcriptome (left) and in whole-blood transcriptome (right) contributing to Factor 4. On 
the top of the heatmaps, blue and red squares identify CTRL and patients with SLE, respectively. Heatmap distance: “Euclidean”, clustering method “complete”. The 
gene expression was normalised using the variance stabilising transformation (VST) method. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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IFN-α-positive B cells. Reinforcing the observation of nucleotide deple
tion, patients showed increased cytidine in the urine. This metabolite is 
a key contributor to Factor 4 in MOFA and better discriminates SLE and 
CTRL samples in urine than other factors. Consistent with this finding, 
the upregulation of TYMS, NT5C3A, TYMP, DYPS, and UPB1 in the 
whole-blood transcriptome of IFN-α-positive patients clearly suggests an 
upregulation of thymidine/uridine degradation toward valine-leucine 
metabolism, and the upregulated cytidine deaminase suggests cytidine 
degradation. The environmental depletion of nucleotides is supported 
by the upregulation of RSAD2 in whole blood and B cells, which is a 
major contributor among the whole blood genes to Factor 4 in MOFA. 
RSAD2 enzyme drives nucleotide depletion induced by IFN-α signalling 

in response to viral infection. It interferes with de novo nucleotide 
synthesis by collaborating with mitochondrial CMPK2, which supports 
RSAD2 activity [25]. Treatments specific for de novo nucleotide syn
thesis are available and used in SLE [45], reducing the flare and auto
antibodies in patients. This is consistent with a direct or indirect effect 
on B cell activity in SLE [46]. The data here suggest an increased 
nucleotide salvage pathway induced by IFN-α signalling. Nowadays, no 
treatments affect this pathway, though, from the current findings, this 
could be a valuable target. 

Remarkably, the LPA receptor-encoding LPAR6 was identified as a 
common upregulated gene in both B-cell transcriptome and whole-blood 
transcriptome in SLE. This, together with INPP1 upregulation, suggests a 

Table 3 
Biological processes of significant MOFA factors and significant contributors.  

MOFA 
Factor 

Contribution Whole-blood transcriptome B-cell transcriptome Plasma metabolome Urine 
metabolome 

Factor 2 + ➢ 0 genes 
➢ None 

➢ 198 genes 
➢ apoptosis (R-HSA-5357801; p.adj =
0.002849), (R-HSA-109581; p.adj = 0.003127) 
➢ BCR and WNT signalling pathway (R-HSA- 
168181; p.adj = 0.003127), (R-HSA-195721; p. 
adj = 0.03238) 
➢ RNA processing (R-HSA-8953854; p.adj =
0.001135) 

➢ 2 peaks 
➢ cortisol 

➢ 2 peaks 
➢ None 

− ➢ 3 genes 
➢ WNT signalling pathway 
(TNKS2, PPP2R5C) 

➢ 51 genes 
➢ antigen presentation (GO:0019886; p.adj =
0.01683),(GO:0019886; p.adj = 0.01683) 
➢ IFN-γ signalling (GO:0071346; p.adj =
0.02344) (R-HSA-877300; p.adj = 0.02693) 
➢ cellular stress (R-HSA-2262752; p.adj =
0.01715) 

➢ 25 peaks 
➢ phosphatidylcholines 
➢ sphingomyelins, lysophosphatidic 
acids 
➢ cortisol precursor 11-deoxycortisol 
➢ hypertensive drug alpha- 
hydroxymetoprolol 

➢ 2 peaks 
➢ None 

Factor 4 + ➢ 25 genes 
➢ interferon (GO:0071357; p.adj 
= 7.046e-25) 
➢ cytokine signalling 
(GO:0019221; p.adj = 2.267e- 
12), 
➢ pyrimidine biosynthetic 
process (GO:0009221; p.adj =
0.0176) 
➢ IFN-α-induced transcription 
factor IRF1 (p.adj = 0.006840) 

➢ 10 genes 
➢ IFN-α (GO:0071357; p.adj = 0.02048) 
➢ cytokine signalling (R-HSA-1280215; p.adj =
0.02482) 
➢ B-cell activation (GO:0002484; p.adj =
0.03741) 

➢ 1 peak 
➢ None 

➢ 1 peak 
➢ None 

− ➢ 0 genes 
➢ None 

➢ 0 genes 
➢ None 

➢ 11 peaks 
➢ Lipids phosphatidylcholines, 
sphingomyelins, and lysophosphatidic 
acids 
➢ hypertensive drug methoxamine 

➢ 0 peaks 
➢ cytidine   

MOFA 
Factor 

Contribution Whole-blood transcriptome B-cell transcriptome Plasma 
metabolome 

Urine metabolome 

Factor 5 + ➢ 48 genes 
➢ hydrogen peroxide catabolic process (GO:0042744; p.adj 
= 0.000082) 
➢ myeloid cell development (GO:0061515; p.adj =
0.04577) 

➢ 61 genes 
➢ apoptotic signalling 
(GO:2001235; p.adj = 0.026) 
➢ p21 regulation by RUNX3 (R- 
HSA-8941855 p.adj = 0.032) 

➢ 1 peak 
➢ None 

➢ 0 peaks 
➢ None 

− ➢ 0 genes 
➢ None 

➢ 14 genes 
➢ minor mRNA maturation 
process (GO:0006370; p.adj =
0.017) 

➢ 0 peaks 
➢ None 

➢ 2 peaks 
➢ None 

Factor 9 + ➢ 51 genes 
➢ neutrophil immunity (GO:0002446; p.adj = 2.294e-9) 
➢ interleukin signalling pathways (R-HSA-449147; p.adj =
0.006192) (Bioplanet 2019; p.adj = 0.007422), (Bioplanet 
2019; p.adj = 0.008916) 

➢ 29 genes 
➢ None 

➢ 2 peaks 
➢ None 

➢ 1 peak 
➢ None 

− ➢ 12 genes 
➢ interleukin signalling pathways (R-HSA-449147; p.adj =
0.008123), (R-HSA-9020702; p.adj = 0.04983) 

➢ 16 genes 
➢ None 

➢ 0 peaks 
➢ None 

➢ 4 peaks 
➢ asthma corticosteroid 6- 
beta-hydroxy-mometasone 
furoate 

Each significant MOFA factor is described in terms of positive (+) and negative (− ) contribution. The total number of contributors in each OMICS data set (relevant 
genes in whole blood and in B cells and relevant peaks in plasma and urine) with the main associated biological pathway (and their p.adj) obtained from the EnrichR 
analysis are indicated. 
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role for LPA in SLE pathogenesis. The intersection between the genes 
upregulated in SLE and in IFN-α-positive SLE indicated that only INPP1 
is affected by IFN-α. This observation is consistent with the increased 
lysophospholipids, which bind to and activate LPAR6 on B cells, and 
validates the restricted upregulation of the LPA receptor LPAR6 in SLE B 
cells. Moreover, lysophospholipids were among the top negative con
tributors in Factors 2 and 4 of the MOFA, which separate CTRL and SLE 
samples. LPAR6 is a novel LPA receptor whose function is not yet 
known, but similar receptor LPAR5 suggest an immunomodulatory role 
in B cells and autoimmunity [34]. 

Protein glycosylation was also altered in SLE [36]. In the whole- 
blood transcriptome, enrichment in asparagine N-linked and sialic 
acid glycosylation were found, whereas B cells of IFN-α-positive patients 
with SLE showed upregulation in glycosylation enzymes such as the 
sialyltransferase ST3GAL6. Recently, our research group validated the 
protein glycosylation changes within SLE B cells [47]. LINC00487 is a 
long non-coding RNA associated with Sjogren’s syndrome disease ac
tivity [48], induced by IFN-α and involved in B cell dysregulation. In the 
present study, it was found to be upregulated in both PRECISESADS B- 
cell and whole-blood transcriptome datasets and in B-cell validation 
dataset. Moreover, in SLE whole blood, it was weakly correlated with 
the lupus activity score (Pearson correlation coefficient = 0.16, p =
0.0026). This suggests that IFN-α signalling causes an alteration in 
glycosylation and long non-coding RNA over metabolism [49]. 

Finally, many Schlafen family members were identified in the pre
sent study. These were recently discovered in T cells, but their function 
remains unclear [50]. In the PRECISESADS and validation B-cell tran
scriptome datasets from IFN-α-positive patients with SLE, SLFN5 and 
SLFN12L were upregulated, suggesting for the first time a role of IFN-α 
in their expression in B cells, as is known for T cells [51]. 

According to the top genes and metabolomic peaks and the clinical 

features highlighted with the MOFA analyses, Factor 4 incorporated the 
IFN-α changes, observed both in B-cell and whole-blood transcriptome 
contributors, which were confirmed by the correlation with IFN- 
α-induced cytokine and autoantibody production in clinical data. Factor 
2 was linked to inflammation and antigen presentation. It was positively 
correlated with the diagnosis age of SLE, suggesting a change in these 
processes driven by age, likely due to the development of autoimmunity. 
Factor 5 was associated with reactive oxygen species (ROS) catabolism 
in whole blood, leading to apoptosis and with a reduction in mRNA 
maturation in B cells. It distinguishes patients with puffy fingers (dac
tylitis), suggesting a direct or indirect stress-oxidative role in this 
inflammation. Factor 9 was linked to interleukin and neutrophil 
inflammation in whole blood, without associations with clinical data. 
Overall, MOFA factors caught different aspects of the disease and iso
lated them. MOFA provided a way to identify, biological changes and 
clinical events driven by the same altered process, such as interferon 
(Factor 4), physiological antigen recognition (Factor 2), stress (Factor 5) 
and neutrophils (Factor 9). Among the described factors, the 4th was 
related to patients with the worst prognosis, as high levels of Factor 4 
were correlated to higher levels of autoantibodies and more severe 
disease. Factor 5 linked the ROS production in whole blood with the 
puffy fingers, suggesting that ROS are mechanism by which stress can 
lead to this clinical inflammation, as already previously suspected [52]. 

To our knowledge, this is the first exploratory analysis that attemp
ted to integrate the omics data of SLE using MOFA. Limitation of this 
study included the low MOFA efficiency in catching biological vari
ability when exploring metabolomics data, that are not naturally linear. 
It favors transcriptomics contribution in the results, excluding the ma
jority of the metabolomics variability in MOFA factors. Further experi
ments targeting enzymes and receptors within the identified pathway 
are required to elucidate the exact role of lysophosphatidic-acid 

Table 4 
Metabolic processes upregulated in the systemic lupus erythematosus (SLE) dataset and in the MOFA integration.  

Process B cells Whole blood Plasma 
metabolomics 

Urine 
metabolomics 

MOFA integration Clinical implications 

Nucleotide 
metabolism 

Observed  

Boosted in 
IFN-α-positive 
patients 

Observed  

Boosted in 
IFN-α-positive 
patients 

Not Observed Observed Observed 
Pyrimidine deoxyribonucleotide 
biosynthetic process enriched in top 
whole-blood genes contributing to 
Factor 4 
Cytidine, first urine metabolite in factor 
2 separation 

Autoimmune events observed in 
patients with deficiency in the 
nucleotide salvage pathway [30] 
No cell-specific details available 

Tryptophan 
metabolism 

Not observed Observed 
Boosted in 
IFN-α-positive 
patients 

Observed Not Observed Not Observed Consumption of tryptophan was 
increased in SLE [31]. It drives the 
synthesis of the immunoregulator 
kynurenine [32] 
Microbiota affect tryptophan 
metabolism by being involved in 
physiological processes and 
autoimmunity [33] 

Fatty acid 
mobility/bio- 
synthesis 

Observed 
Boosted in 
IFN-α-positive 
patients 

Observed 
Boosted in 
IFN-α-positive 
patients 

Not Observed Not Observed Observed 
Phosphatidylcholines and 
sphingomyelins are top negative plasma 
contributors in Factors 2 and 4 

Increased to sustain the development 
of inflammatory mediators 

Lysophos- 
phatidic acid 
signalling 

Observed 
Boosted in 
IFN-α-positive 
patients 

Observed 
Boosted in 
IFN-α-positive 
patients 

Observed Not Observed Observed 
Lysophosphatidic acids are top negative 
plasma contributors in Factors 2 and 4 

No information in B cells 
Suggested to have an 
immunoregulatory function [34] 

Dopamine Observed 
Only in IFN- 
α-positive 
patients 

Observed 
Boosted in 
IFN-α-positive 
patients 

Not Observed Not Observed Not Observed Novel mediator of the inflammation 
spotted in PBMCs 
No detailed cell-specific information is 
available [35] 

Glycosylation Observed 
Only in IFN- 
α-positive 
patients 

Observed 
Boosted in 
IFN-α-positive 
patients 

Not Observed Not Observed Not Observed Alteration in glycosylation identified in 
PBMCs [36] 
No information in B cells is available 

Schlafen protein Observed 
Boosted in 
IFN-α-positive 
patients 

Observed 
Boosted in 
IFN-α-positive 
patients 

Not Observed Not Observed Not Observed Protein with unknown function in the 
T cells 
Has not been identified in B cells before  
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signalling, glycosylation, and nucleotide salvage pathway changes in 
SLE. It is noteworthy that this study represents a novel approach to the 
investigation of SLE but also autoimmune diseases using multiple 
sources of OMICS data, having the potential to provide a comprehensive 
explanation of the underlying changes in the diseases. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.clim.2024.110243. 
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[7] Á. Fernández-Ochoa, C. Brunius, I. Borrás-Linares, R. Quirantes-Piné, M. de la 
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