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ARTICLE INFO ABSTRACT

Keywords: Objective: To link changes in the B-cell transcriptome from systemic lupus erythematosus (SLE) patients with
Systemic lupus erythematosus those in their macroenvironment, including cellular and fluidic components.

Multi-omics Methods: Analysis was performed on 363 patients and 508 controls, encompassing transcriptomics, metab-
f/[g;illlg;}ﬁe: olomics, and clinical data. B-cell and whole-blood transcriptomes were analysed using DESeq and GSEA. Plasma
MOFA and urine metabolomics peak changes were quantified and annotated using Ceu Mass Mediator database.

Common sources of variation were identified using MOFA integration analysis.

Results: Cellular macroenvironment was enriched in cytokines, stress responses, lipidic synthesis/mobility
pathways and nucleotide degradation. B cells shared these pathways, except nucleotide degradation diverted to
nucleotide salvage pathway, and distinct glycosylation, LPA receptors and Schlafen proteins.

Conclusions: B cells showed metabolic changes shared with their macroenvironment and unique changes directly
or indirectly induced by IFN-a signalling. This study underscores the importance of understanding the interplay
between B cells and their macroenvironment in SLE pathology.

1. Introduction

B cells are immune cells specialised in the production and secretion
of antibodies against pathogens and cancer cells. In systemic lupus er-
ythematosus (SLE), after the loss of tolerance, B cells become autor-
eactive and develop antibodies that target and destroy cells and tissues.
This causes a periodic inflammatory reaction and tissue necrosis in
specific areas, denoting an active disease status known as “flare” [1].
The peculiar autoantibodies primarily target nuclear structures as well
as antigens related to other structures and functions [2]. B cells also
contribute to the SLE disease through cell-to-cell contact, production of
inflammatory cytokines [3], and due to defective IL-10-producing B cells
unable to dampen inflammation [4]. Thus, interferon (IFN)-a expression

is correlated with SLE severity and is used to classify patients [5]. The
majority of the studies to detect novel disease markers and treatments
for SLE focussed on single omics approaches in combination with clin-
ical data. A step further was made with the IMI PRECISESADS project
aiming to characterize autoimmune diseases based on a multi-omics
approach, providing a wide vision of the disease changes in tran-
scriptomics, metabolomics and clinics [6,7]. The present work investi-
gated the changes occurring in the blood macroenvironment of patients
with SLE from PRECISESADS and examined how these changes affect
the transcriptome of B cells. Moreover, blood metabolites such as nu-
trients and signalling molecules shape the natural macroenvironment in
which mature B cells perform their physiological functions [5,8]. Plasma
and urine contain the metabolites circulating in the bloodstream and the
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Table 1
Number of samples available in the study.
Samples B-cell Whole-blood Plasma Urine
transcriptome transcriptome metabolome metabolome
CTRL 27 508 55 55
SLE 36 363 46 46
CTRL 22 46 55 55
integrated
with
MOFA
SLE 11 35 46 46
integrated
with
MOFA

Number of systemic lupus erythematosus (SLE) and control (CTRL) samples from
the PRECISESADS cohorts are indicated. Number of samples shared between the
transcriptomic and metabolomic analyses in the MOFA integration analysis are
also indicated.

metabolites actively removed from it, respectively. They were therefore
used to analyse the blood macroenvironment. Another approach in-
cludes whole-blood transcriptome analysis, which approximates the
global gene expression changes among the immune cell types. The
overlap between the transcriptome and metabolome defines the blood
macroenvironment. Changes in the B-cell transcriptome were linked to
the macroenvironmental changes, and validated by comparing the re-
sults with a previously published database used as a validation dataset
matching for study design, technology and samples, including the B-cell
transcriptome from SLE patients and healthy controls (CTRL) [9]. Dif-
ferences in B cells in IFN-a-positive and IFN-a-negative SLE subgroups
were investigated, approving the results by comparison with the vali-
dation dataset and by machine learning approaches. Finally, the
metabolomics and transcriptomics analyses were integrated to identify
not only the common Multi Omics Factor analysis (MOFA) factors dis-
tinguishing patients with SLE from CTRLs but also the genes and mass
spectrometry peaks primarily contributing to them. Overall, their con-
tributions together with the clinical data have led to innovations in
elucidating the underlying biological processes involved in SLE.

2. Material and methods
2.1. Samples and cohort selection

The cross-sectional dataset from the European PRECISESADS cohort
(number NCT02890121 in ClinicalTrials.gov) aimed to reclassify the
autoimmune diseases by the molecular signature including clinical
(Table S1) and multi-omics information. The patient selection and
quality control have previously been described in detail [6,7]. PRE-
CISESADS adhered to the standards set by International Conference on
Harmonization and Good Clinical Practice (ICH- GCP), and to the ethical
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was partitioned for supplementary analysis. Purified B lymphocytes
were isolated from a fraction of the second aliquot (36 SLE and 27 CTRL;
Table 1 and Fig. S1). Moreover, 101 paired samples of plasma and urine
were collected (46 SLE and 55 CTRL).

2.2. Transcriptome data generation

The whole blood and sorted B cell samples were sequenced using a
Novaseq 5000 and a NextSeq 500, respectively, with an average
coverage per sample of 13.6 Million reads for the former and 29.3
Million reads for the latter. The FastQ files were aligned to the UCSC
Homo sapiens reference genome (hgl19) and annotated to GENCODE 19
with STAR v2.5.2 [11] using two-pass mapping strategy with default
parameters. Gene quantification was performed using RSEM v1.2.31
[12]. At the end, 363 SLE and 508 CTRL whole-blood transcriptomes
and 36 SLE and 27 CTRL B-cell transcriptomes were profiled (Table 1). A
validation dataset was downloaded from the GEO database
(GSE149050). It contains the B-cell transcriptomes from 24 CTRLs and
64 patients with SLE, including 30 IFN-a-positive and 34 IFN-a-negative
patients. The validation dataset patients and PRECISESADS dataset pa-
tients were matched for treatments and percentage of patients taking
treatments.

2.3. Analysis of B-cell purity

B-cells were sorted by CD19 positive selection (Miltenyi) and the
purity checked by flow cytometry. After extraction, the B-cell RNA pu-
rity of SLE and CTRL samples was evaluated using two tools based on
immune cell-specific gene signatures, Macroenvironment Cell
Populations-counter [13] on R with default parameters and CIBER-
SORTx [14] (leukocyte panel LM22; online version, https://cibersortx.st
anford.edu/). Samples with digital purity lower than 90% were excluded
from the subsequent analysis. The final number of samples included 29
SLE and 22 CTRL samples (Table 2).

2.4. IFN-a classification in whole-blood and B-cell samples

Patients with SLE were classified into IFN-a-positive and IFN-
a-negative subgroups using an IFN-a score established based on the
Kirou score [15] approach. This approach measures the IFN-a response
using the transcriptome of 20 genes [7] (SIGLEC1, IFIT3, IFI6, LY6E,
MX1, USP18, OAS3, IFI44L, OAS2, IFIT1, EPSTI1, ISG15, RSAD2, HERCS5,
OAS1, IFI44, SPATS2L, PLSCR1, IFI27, and RTP4) in addition to six IFN-
a-associated genes (EIF2AK2, GBP1, IRF1, SERPING1, CXCLI0,
FCGRI1A). Gene expression levels were quantified in terms of raw reads
normalised to the total number per sample, and the score was calculated
as the expression of each gene (g) for each SLE sample (s) with the mean
expression divided by the standard deviation of the CTRLs as follows:

geneexpression,, — mean(geneexpressionCTRLpopulation)

Zinterferonactivityscore =

principles written in the Declaration of Helsinki (2013). Each patient
signed an informed consent prior to study inclusion. The Ethical Review
Boards of the 19 participating institutions approved the protocol of the
cross-sectional study. This study was a pre-planned substudy to be
specifically conducted in the SLE population, defined by the American
College of Rheumatology of 1997 criteria [10] and fulfilling the CON-
SORT statements (Supplementary data). In brief, whole blood samples
from the SLE (n = 363) and CTRL (n = 508) groups were divided into
two aliquots: the first contained all immune cell types, and the second

standarddeviation(geneexpressionCTRLpopulation)

The higher the Z interferon activity score (Z-score) for a particular
gene compared to the CTRLs, the higher the IFN-a activation of that
gene. By means of the Z-score, samples were grouped using the hierar-
chical clustering of the Complexheatmap package v2.12.0 [16] on R.
This showed two subgroups of 22 IFN-a-positive and 7 IFN-o-negative
purified B-cell samples (Fig. 1A). Two CTRLs showed a high IFN score in
B cells and were excluded from further analyses (Table 2). Similarly, SLE
whole-blood samples were classified into 269 IFN-a-positive and 94 IFN-
a-negative samples.
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Table 2
B-cell samples from systemic lupus erythematosus and controls of the PRECISESADS cohorts were discarded from further analysis based on the criteria used to extract

those filtered.

Individuals Unfiltered B cells with digital purity < B cell < 90% purity/high specific cell type IFN-a-positive CTRL Total filtered
samples 90% in MCP contamination in Cibersort samples samples

CTRL 27 samples 3 samples 2 samples 22 samples

total SLE 36 samples 6 samples 1 sample 29 samples

IFN-a-positive 25 samples 2 samples 1 sample 22 samples
SLE

IFN-a-negative 11 samples 4 samples 7 samples
SLE

CTRL: controls; MCP: Microenvironment Cell Populations; SLE: systemic lupus erythematosus.
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Fig. 1. Classification of systemic lupus erythematosus (SLE) samples based on the Z-score of the 26 interferon (IFN) genes and Cellular and Fluidic environment
changes. A) SLE and control (CTRL) unfiltered samples are indicated at the bottom of the heatmap. The classification into positive and negative samples was obtained
by hierarchical clustering based on the Z-score of the 26 IFN-a genes measured for each gene within each sample. A single square corresponds to the Z-score of a
specific IFN-a gene for an individual sample. Euclidean distance and Ward’s method have been used for hierarchical clustering. B) Volcano plot of the differential
gene expression (DGE) analysis of the CTRL samples vs patients with SLE in the PRECISESADS whole blood dataset. Downregulated and upregulated genes are
depicted in blue and red, respectively. Only the top 15 genes in each category are indicated. The significance thresholds, shown as red lines, are |Log2FC| > 0.5 and
false discovery rate (FDR) < 0.05C) Gene set enrichment analysis (GSEA) of the whole-blood transcriptome using the gene ontology (GO) and Reactome libraries. The
categories of metabolic pathways and their adjusted p-values for each GO pathway are depicted. D) Levels of metabolites in plasma and urine of CTRL and SLE
samples are depicted in blue and red, respectively. Significance was calculated using the Mann-Whitney test. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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2.5. Differential gene expression analysis

All differential gene expression (DGE) analyses provided raw gene
counts as input for DESeq2 [17], used with default parameters. Sex and
age were included in the model as confounding factors. Although pre-
sent in all subgroups, the treatments were not included because of their
heterogeneity and variable co-administration with other drugs and
medications. The threshold values to identify the DEGs were set to |
Log2FC| >0.5 and false discovery rate (FDR) <0.05. Nominal p-values
were adjusted for multiple testing using the FDR method.

2.6. Gene set enrichment analysis

The gene set enrichment analysis was performed using GSEA [18]
v4.1.0 for the Linux system. The matrix counts were uploaded directly
into GSEA, and the libraries explored included Reactome v.2022.1 and
Biological Processes (BP) v.2022.1. The EnrichR [19] tool v2022 was
also used, uploading the genes identified as upregulated and down-
regulated in the DGE analysis separately. For both, only processes with a
Benjamini-Hochberg adjusted p-value <0.05 were considered.

2.7. Metabolomics data generation and statistical analysis

Metabolomics data were pre-processed according to the protocol
described in previous PRECISESADS study [7]. In total, 531 and 1022
peak intensities were identified in plasma and urine samples, respec-
tively, and compared between the SLE and CTRL groups. The log2FC
value was calculated as the log2 of the ratio between the median peak
signals in SLE and in CTRL for each peak. The p-value was estimated
using the non-parametric Mann-Whitney test and corrected using the
FDR method. Metabolites with a statistically significant difference (FDR
< 0.05) were used for further analysis. When comparing groups divided
according to sex and age (younger than 35 - between 35 and 50 - and
older than 50), all peaks were not significantly different, excluding a
significant contribution of these confounding factors. Although present
in all subgroups, the treatments were not tested because of their het-
erogeneity and variable co-administration with other medications.

2.8. Metabolomics peak annotation

The plasma and urine peaks were annotated using the Ceu Mass
Mediator tool [20] in the CMMR R package [21]. The data used included
the mass-to-charge (m/z) ratio and retention time (rt). The metabolites
were filtered by those identified or predicted according to the Human
Metabolome Database (HMDB) [22]. The MS/MS data, when available,
were analysed using GNPS [23], and the results matched with those
obtained with only m/z and rt.

2.9. Machine learning validation

The extreme gradient boosting model (XGBoost) based on the
random forest machine learning method was performed on CTRL and
IFN-a-positive SLE B cells from the PRECISESADS and the validation
datasets, training the model with seven-eighths of the samples and
testing with the remaining. The xgboost package on R was used setting
as parameters max_depth = 3, eta = 0.1, gamma = 0, min_child_weight
= 1. The genes in the model came from the GSEA gene sets.

2.10. Multi-omics factor analysis

MOFA+ is an integration method catching the common variability
among the datasets provided as input. MOFA calculates factors made up
of a linear combination of the multi-omics variables and selects the most
relevant contributors after discarding the not relevant ones by regula-
rization. It provides a few easily interpretable factors due to the limited
number of contributors to explore, compared to other dimension
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reduction methods as principal component analysis. Its application in
public datasets can dig deeper into the data compared to conventional
statistical analysis in any field. The only requirement is to have mul-
tiomics data from the same samples or patients. MOFA [24] was used
according to the developer’s instructions (https://biofam.github.
io/MOFA2/), where further details about the algorithm are available.
The transcriptome data from B cells and whole blood were transformed
using the Variance Stabilising Transformation (VST) function in R to
make the data approximately homoscedastic. To shrink the size of the
matrices data, the top 5000 genes were selected, based on the highest
variance obtained from the size factor normalised data. The plasma and
urine metabolomics data were log-transformed to improve their
Gaussian distribution. All peaks were included in the analysis. The
number of samples used for MOFA is reported in Table 1. The number of
MOFA factors was determined after the evaluation of the results, from 3
to a maximum of 30, to avoid factor redundancy, as explained in the
MOFA-- [24] instructions. The Factors 18 and 20 included at least three
MOFA factors (Factor 2, 4, 5 and 9) with significant separation of SLE
from CTRLs (Table S2). Factor 18, which showed the best separation
(FDR-corrected Mann-Whitney test), was used for further analysis. In
the MOFA factor exploration, only the top 5% genes/peaks with a higher
contribution and a contribution weight > 0.50 were studied (Fig. S2).
MOFA ran with default parameters and fast convergence. The factors
were not correlated with each other, ensuring that the variability cached
by the factors came from non-overlapping variations in genes or peaks.

2.11. Clinical data analysis

The 50 clinical features and 49 autoantibody measurements from the
PRECISESADS dataset were analysed and correlated with significant
Factors 2, 4, 5, and 9 of the MOFA analysis using Pearson correlation.
The 157 binary clinical data points were analysed using the Wilcoxon
test after dividing the groups into two categories. The nominal p-values
were corrected using the Benjamini-Hochberg method.

3. Results

3.1. Exploration of the disease macroenvironment using transcriptomics
and metabolomics

The disease macroenvironment of SLE can be subdivided into a
cellular macroenvironment—which includes the whole-blood tran-
scriptome—and a fluidic macroenvironment— which includes the
plasma and urine metabolome. Compared with CTRL, the DGE analysis
of the whole-blood transcriptomic data highlighted 1232 upregulated
and 359 downregulated genes. As expected, the top DEGs were com-
ponents of the IFN response pathway (Fig. 1B). Moreover, GSEA iden-
tified increased IFN-a, f, and y activation and cytokine responses in the
patients with SLE (Fig. 1C). In addition to Notch/Wnt signalling, the
cellular stress response and fatty acid metabolism were increased,
together with metabolomic processes involving dopamine, glucose
import metabolism, protein glycosylation, and NAD/nucleotide
biosynthesis. For the 359 downregulated genes in SLE, no significant
biological processes were identified.

Regarding the fluidic macroenvironment, the hydroxychloroquine
peak was significantly higher in both SLE plasma and urine analyses,
which was expected because most patients (76.6%) received antima-
larial drugs. Furthermore, upregulation of the peak signals annotated as
indole-3-propionic acid/indole-3-methyl acetate and lysophospholipid
compounds was found in the plasma, and peak signals with a signifi-
cantly upregulated intensity including cytidine and 2’ Deoxyuridine
were found in the urine (Fig. 1D and Table S3). These findings are
consistent with the changes in nucleotide metabolism and cellular
response to lipids observed in the whole-blood transcriptome.
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3.2. Exploration of B cell characteristics

The DGE analysis of the SLE B-cell transcriptome in comparison with
CTRL revealed 87 upregulated and 7 downregulated genes (Fig. 2A).
GSEA suggested activation of the interferon pathway and immune sys-
tem, also identified in the EnrichR [18] analysis (results not shown).
Among the upregulated genes, were identified thymidine phosphorylase
(TYMP) and cytidine/uridine monophosphate kinase 2 (CMPK2)
involved in the pyrimidine and purine salvage pathways, respectively.
RSAD2, an enzyme involved in viral-induced nucleotide depletion (CTP,
UTP) [25] was also detected. Furthermore, LPAR6 a gene encoding the
lysophosphatidic acid (LPA) receptor and INPP1 a gene required for LPA
signalling and synthesis [26] were revealed. Finally, the long noncoding
RNA, LINC00487, was identified. No enrichment was detected for the
downregulated genes.

Differences in the whole-blood transcriptome between SLE and CTRL
were compared with the changes found in the B-cell transcriptome.
Overall, 65 upregulated and 3 downregulated genes were common in
both DGE analyses. Interestingly, 22 genes were found upregulated and
4 genes downregulated in B cell DGE analysis but not in whole-blood
DGE analysis (Fig. 2B). For clarity purposes, these genes will be
named “unshared” for the rest of the manuscript. Among the unshared
upregulated genes, LPAR6 and INPP1 were identified, as well as
GRAMD2B, MACROD2, and LINC00402, which are involved in autoim-
munity [27]. Furthermore, Schlafen family members SLFN12L and

SLFN5, and its anti-sense ENSG00000266947 were specifically high-
lighted in SLE B cells.

3.3. Induction of differential expression of B cell genes by interferon-a

Because IFN-a drives key metabolic changes within the immune cells
[28], patients were classified using IFN-a Z-score into IFN-a-positive and
IFN-a-negative subgroups to examine how IFN-a regulates the unshared
B cell characteristics in SLE.

DGE analysis on 7 IFN-a-negative SLE compared to 22 CTRLs pro-
vided only 2 genes differentially expressed, SIRPB1 (1og2FC = 1.19 p.
adj = 0.0023) and Y_RNA (log2FC = —23.32 p.adj = 2.18e-06), where
the latter was not relevant because only expressed in 5 CTRL samples.

DGE analysis of the 22 IFN-a-positive SLE against the 22 CTRLs
showed a total of 163 upregulated and 52 downregulated genes
(Fig. 2C). As expected, GSEA highlighted interferon signalling pathways
(G0:0034340; p.adj = 5.51e-04) and immune system processes
(G0:0002702; p.adj = 0.0074) among the upregulated genes. Nucleo-
tide catabolic processes (GO:0006213; p.adj = 0.044 and GO:0009151;
p-adj = 0.022) were also enriched. Upregulation of the pyrimidine and
purine salvage pathway genes TYMP, CMPK2, adenosine deaminase
(ADA), and guanosine monophosphate reductase (GMPR) was observed.
The urate transporter LGALS9, which removes nucleotide degradation
metabolites, was also identified. Furthermore, RSAD2 together with
glycosylation enzyme genes e.g. ST3GAL6, as hypothesized in other
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publications [29] were detected. Lipidic uptake and mobility genes
LDLR, APOL6, SLCO4C1, and ATP8A1 as well as genes encoding specific
biosynthetic lipidic class enzymes (ALDH1A1, DGKH, and CERS6) were
revealed. INPP1, MOXDI1 involved in dopamine metabolism, and
Schlafen family members SLFN12L and SLFN5 were also upregulated.
The 52 downregulated genes were not enriched in any process.

Of the 22 unshared upregulated genes in the entire SLE cohort, 17
genes were common with the upregulated genes in IFN-a-positive pa-
tients. Among them, IFITM2 and STAT4 induced by IFN-a, GRAMD2B,
MACRODZ2, LINCO0402, INPP1, SLFN5, BFSP2, EPB41L3, NOD2, PLCL1,
RNF144A, STOM, and UBASH3B were identified. The remaining five
(non-overlapping) upregulated genes were LPAR6, RCBTB2, SHLD2P3,
UPF3AP2, and ENSG00000271127. Of the 4 unshared downregulated
genes in the entire SLE cohort, KCNC4, RGPDS8, and SGSM1 were shared,
and KNDC1 was not shared (Fig. 2D). Findings in whole blood and B cells
are summarized in Fig. 2E.

3.4. Validation of total and unshared B cell characteristics in patients

The DGE of the validation dataset revealed 428 upregulated and 144
downregulated genes. The GSEA confirmed the activation of the IFN
pathway and immune system as well as nucleoside metabolic processes.
Consistent with the PRECISESADS dataset, no enrichment was detected
for the set of downregulated genes. Sixty-three genes were found to be
upregulated in both datasets, including nucleotide salvage pathway-
related genes TYMP and CMPK2, and LPAR6, SLFN12L, SLFN5 and
LINC00487, but none of the downregulated genes was validated (Fig.
S3A).

Of the 22 unshared genes upregulated in B cells from the PRE-
CISESADS dataset (Fig. 2B), only 6 were validated: STAT4, LPAR6,
SLFN5, NOD2, EPB41L3 and STOM. The differences in the DEGs between
the PRECISESADS and the validation datasets may have arisen because
of technical and biological consideration such as differences in library
preparation, library type, sequencing depth or sample heterogeneity.

Because the validation dataset also classifies the patients with SLE
into IFN-a-positive and IFN-a-negative subgroups, a DGE analysis was
performed. In total, 92 upregulated genes and one downregulated gene
(EML6) were common with the PRECISESADS dataset (Fig. S3B). As
expected, most of the upregulated validated genes (49 out of 92) were
related to the IFN-a response. Finally, the nucleotide salvage pathway-
related genes TYMP, CMPK2 and GMPR,; the urate transporter LGALS9;
and the LPA synthesis-related INPP1 were also identified. Additionally,
the robustness of nucleotide salvage, dopamine, glycosylation and other
pathways in classifying CTRL and IFN-a-positive SLE B cells were
confirmed using the XGBoost machine learning method in both PRE-
CISESADS and validation datasets (Fig. S4).

3.5. Multi-omics systemic lupus erythematosus data integration

MOFA is a multi-omics integration tool that facilitates the joint
analysis of the different -omics layers, such as transcriptomics and
metabolomics data (Fig. S5A) to identify the common sources of varia-
tion among them, as explained in the material and methods. This
approach identifies factors that separate patients with SLE from CTRL
individuals and investigates the contributors of these factors to char-
acterize their biological identity. Each factor highlights different altered
processes in SLE, which here are split up to ease the understanding and
the exploration of the disease. First, the model that identified 18 factors
was confirmed to have the best performance in separating the SLE and
CTRL samples (Fig. S5B). Because MOFA facilitates the analysis of the
direct contribution of genes and metabolomic peaks to each factor, these
factors can be characterised. The total metabolomic contribution was
lower than the total transcriptomic contribution (Fig. 3A and Table S4).
This may be because of the lower suitability of metabolomics data for
linear models, higher noise in the data, or a reduced number of features
(Fig. S5A). Nonetheless, unsupervised MOFA identified Factors 2, 4, 5,
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and 9 (Fig. 3B) as significant in discriminating patients with SLE from
CTRLs, with Factor 4 performing better than others (Table S4 and
Fig. 3C, D). For Factors 4 and 9, higher factor values were associated
with SLE. Therefore, genes or metabolomic peaks positively contributing
to these factors support the biological processes underlying the factors,
whereas those that contribute negatively contradict these processes. In
the case of Factors 2 and 5, patients with SLE present lower values than
CTRLs, thus features contributing to the disease are negatively associ-
ated with the factor. The identities of the contributors and the biological
interpretation of the significant factors are reported in Table 3 and Table
S5.

To better understand the biological processes, the significant Factors
2, 4, 5, and 9 were correlated with 49 autoantibodies, 50 clinical mea-
surements and 157 other clinical variables and symptoms (Table S6).
Factor 2 showed no association with any clinical feature except for a
positive correlation with the age of SLE diagnosis. Factor 5 showed an
association with puffy fingers. Factor 9 did not show any significant
correlations. Factor 4 was positively correlated with ENA, Ul RNP,
R052, Ro60, SSA, SM, Jo1, and SSB autoantibodies and with Kappa light
chain fragments. Moreover, Factor 4 was positively correlated with the
IFN-a Kirou score and IFN-induced cytokines IP 10, IL-1RA, and MCP2,
with the exception of IL-1RII, which was negatively correlated.

4. Discussion

The present study aimed to provide an overview of the cellular
macroenvironment, through analysis of the whole-blood transcriptome,
and fluidic macroenvironment, thanks to analysis of plasma and urine
metabolomics, of the SLE B cells that may contribute to their dysfunc-
tion. The common changes in the SLE environment and B-cell tran-
scriptome are summarized in Table 4. Although the SLE PRECISESADS
cohort had a heterogeneous variety of co-administration of drugs, this
work always granted group comparisons having similar percentages in
treatments, where possible, focussing on the B cells (Table S7). This
approach reduced the effect of drugs on the results.

The whole-blood transcriptome describes the macroenvironment in
patients with SLE in which the immune cells are affected by oxidative
stress [37] and are forced to import [38] and synthesise lipids [39] to
sustain the inflammation. The IFN-a and other cytokine signalling
pathways are also activated, leading to an increased influx of and de-
mand for glucose [40]. The DGE analysis between the CTRL and IFN-
a-positive SLE samples showed that these processes are exacerbated,
including NAD" metabolism, the pentose phosphate pathway, and
serine/aromatic amino acid metabolism (not shown).

The transcriptome of B cells from IFN-a-negative patients with SLE
did not differ from that of CTRL B cells, as observed in other studies [7],
but supports the limited impact of the treatments in the data. On the
other hand, the B-cell transcriptome from IFN-a-positive patients with
SLE showed upregulated IFN and cytokine signatures, as expected, in
addition to upregulated lipid synthesis and transport [41].

IFN-a-dependent tryptophan physiologically prevents viral prolifer-
ation. It is mainly observed in the whole-blood transcriptome of IFN-
a-positive patients with SLE, where it is driven by protein translation
(WARS1), NAD+ (KYNU, IDO1, PITGS, NNMT, NMNAT2, NAMPT),
indole derivatives (IL4I1 [42], AOC1, AOX1) and serotonin (MAOA)
synthesis. This finding supports the enrichment of the serotonin meta-
bolic pathway in IFN-a-positive patients observed in GSEA.

Moreover, [FN-a induces a higher demand for nucleotides to sustain
cell proliferation during infection, which is fulfilled through de novo
synthesis [43]. To face high nucleotide consumption, the nucleotide
salvage pathway is activated, recycling nucleotides and preventing
excessive energy and time expenditure. Impairment of the nucleotide
salvage pathway in lymphocytes leads to low survival and proliferation
[44]. CMPK2 and TYMP, associated with the nucleotide salvage
pathway, were upregulated in whole blood and B cells of patients,
whereas ADA, GMPR, and LGALS9 were exclusively upregulated in SLE
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Fig. 3. Identification of variation among multi-omics data from systemic lupus erythematosus (SLE) patients using Multi-Omics Factor Analysis (MOFA) factors. A)
The violet scale represents the percentage of variance explained by MOFA factors within an -omics dataset (B-cell transcriptome, whole-blood transcriptome, plasma
metabolome, and urine metabolome). The higher the percentage of variance explained among the -omics datasets, the higher the shared variability. B) Violin plot
representing SLE (red) and control sample (CTRL; blue) distribution based on each MOFA factor’s value. C) Scatterplot of the top 9 genes contributing to Factor 4 in
B-cell transcriptome (top left) and in whole-blood transcriptome (bottom left) and top 9 peaks contributing to Factor 4 in urine metabolome (top right) and in plasma
metabolome (bottom right). D) Heatmaps using the top 20 genes in B-cell transcriptome (left) and in whole-blood transcriptome (right) contributing to Factor 4. On
the top of the heatmaps, blue and red squares identify CTRL and patients with SLE, respectively. Heatmap distance: “Euclidean”, clustering method “complete”. The
gene expression was normalised using the variance stabilising transformation (VST) method. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Table 3
Biological processes of significant MOFA factors and significant contributors.
MOFA Contribution ~ Whole-blood transcriptome B-cell transcriptome Plasma metabolome Urine
Factor metabolome
Factor 2 + > 0 genes > 198 genes > 2 peaks > 2 peaks
> None > apoptosis (R-HSA-5357801; p.adj = > cortisol > None
0.002849), (R-HSA-109581; p.adj = 0.003127)
> BCR and WNT signalling pathway (R-HSA-
168181; p.adj = 0.003127), (R-HSA-195721; p.
adj = 0.03238)
> RNA processing (R-HSA-8953854; p.adj =
0.001135)
- > 3 genes > 51 genes > 25 peaks > 2 peaks
> WNT signalling pathway > antigen presentation (GO:0019886; p.adj = > phosphatidylcholines > None
(TNKS2, PPP2R5C) 0.01683),(G0:0019886; p.adj = 0.01683) > sphingomyelins, lysophosphatidic
> IFN-y signalling (GO:0071346; p.adj = acids
0.02344) (R-HSA-877300; p.adj = 0.02693) > cortisol precursor 11-deoxycortisol
> cellular stress (R-HSA-2262752; p.adj = > hypertensive drug alpha-
0.01715) hydroxymetoprolol
Factor 4 + > 25 genes > 10 genes > 1 peak > 1 peak
> interferon (GO:0071357; p.adj > JFN-a (GO:0071357; p.adj = 0.02048) > None > None
= 7.046e-25) > cytokine signalling (R-HSA-1280215; p.adj =
> cytokine signalling 0.02482)
(G0:0019221; p.adj = 2.267e- > B-cell activation (GO:0002484; p.adj =
12), 0.03741)
> pyrimidine biosynthetic
process (GO:0009221; p.adj =
0.0176)
> [FN-a-induced transcription
factor IRF1 (p.adj = 0.006840)
- > 0 genes > 0 genes > 11 peaks > 0 peaks
> None > None > Lipids phosphatidylcholines, > cytidine
sphingomyelins, and lysophosphatidic
acids
> hypertensive drug methoxamine
MOFA Contribution =~ Whole-blood transcriptome B-cell transcriptome Plasma Urine metabolome
Factor metabolome
Factor 5 + > 48 genes > 61 genes > 1 peak > 0 peaks
> hydrogen peroxide catabolic process (GO:0042744; p.adj > apoptotic signalling > None > None
= 0.000082) (GO:2001235; p.adj = 0.026)
> myeloid cell development (GO:0061515; p.adj = > p21 regulation by RUNX3 (R-
0.04577) HSA-8941855 p.adj = 0.032)
- > 0 genes > 14 genes > 0 peaks > 2 peaks
> None > minor mRNA maturation > None > None
process (GO:0006370; p.adj =
0.017)
Factor 9 + > 51 genes > 29 genes > 2 peaks > 1 peak
> neutrophil immunity (GO:0002446; p.adj = 2.294e-9) > None > None > None
> interleukin signalling pathways (R-HSA-449147; p.adj =
0.006192) (Bioplanet 2019; p.adj = 0.007422), (Bioplanet
2019; p.adj = 0.008916)
- > 12 genes > 16 genes > 0 peaks > 4 peaks
> interleukin signalling pathways (R-HSA-449147; p.adj = > None > None > asthma corticosteroid 6-

0.008123), (R-HSA-9020702; p.adj = 0.04983)

beta-hydroxy-mometasone
furoate

Each significant MOFA factor is described in terms of positive (+) and negative (—) contribution. The total number of contributors in each OMICS data set (relevant
genes in whole blood and in B cells and relevant peaks in plasma and urine) with the main associated biological pathway (and their p.adj) obtained from the EnrichR

analysis are indicated.

IFN-a-positive B cells. Reinforcing the observation of nucleotide deple-
tion, patients showed increased cytidine in the urine. This metabolite is
a key contributor to Factor 4 in MOFA and better discriminates SLE and
CTRL samples in urine than other factors. Consistent with this finding,
the upregulation of TYMS, NT5C3A, TYMP, DYPS, and UPBI in the
whole-blood transcriptome of IFN-a-positive patients clearly suggests an
upregulation of thymidine/uridine degradation toward valine-leucine
metabolism, and the upregulated cytidine deaminase suggests cytidine
degradation. The environmental depletion of nucleotides is supported
by the upregulation of RSAD2 in whole blood and B cells, which is a
major contributor among the whole blood genes to Factor 4 in MOFA.
RSAD2 enzyme drives nucleotide depletion induced by IFN-« signalling

in response to viral infection. It interferes with de novo nucleotide
synthesis by collaborating with mitochondrial CMPK2, which supports
RSAD2 activity [25]. Treatments specific for de novo nucleotide syn-
thesis are available and used in SLE [45], reducing the flare and auto-
antibodies in patients. This is consistent with a direct or indirect effect
on B cell activity in SLE [46]. The data here suggest an increased
nucleotide salvage pathway induced by IFN-a signalling. Nowadays, no
treatments affect this pathway, though, from the current findings, this
could be a valuable target.

Remarkably, the LPA receptor-encoding LPAR6 was identified as a
common upregulated gene in both B-cell transcriptome and whole-blood
transcriptome in SLE. This, together with INPP1 upregulation, suggests a
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Table 4

Metabolic processes upregulated in the systemic lupus erythematosus (SLE) dataset and in the MOFA integration.
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Process B cells Whole blood Plasma Urine MOFA integration Clinical implications
metabolomics metabolomics
Nucleotide Observed Observed Not Observed Observed Observed Autoimmune events observed in
metabolism Pyrimidine deoxyribonucleotide patients with deficiency in the
Boosted in Boosted in biosynthetic process enriched in top nucleotide salvage pathway [30]
IFN-a-positive IFN-a-positive whole-blood genes contributing to No cell-specific details available
patients patients Factor 4
Cytidine, first urine metabolite in factor
2 separation
Tryptophan Not observed Observed Observed Not Observed Not Observed Consumption of tryptophan was
metabolism Boosted in increased in SLE [31]. It drives the
IFN-a-positive synthesis of the immunoregulator
patients kynurenine [32]
Microbiota affect tryptophan
metabolism by being involved in
physiological processes and
autoimmunity [33]
Fatty acid Observed Observed Not Observed Not Observed Observed Increased to sustain the development
mobility/bio- Boosted in Boosted in Phosphatidylcholines and of inflammatory mediators
synthesis IFN-a-positive IFN-a-positive sphingomyelins are top negative plasma
patients patients contributors in Factors 2 and 4
Lysophos- Observed Observed Observed Not Observed Observed No information in B cells
phatidic acid Boosted in Boosted in Lysophosphatidic acids are top negative ~ Suggested to have an
signalling IFN-a-positive IFN-a-positive plasma contributors in Factors 2 and 4 immunoregulatory function [34]
patients patients
Dopamine Observed Observed Not Observed Not Observed Not Observed Novel mediator of the inflammation
Only in IFN- Boosted in spotted in PBMCs
a-positive IFN-a-positive No detailed cell-specific information is
patients patients available [35]
Glycosylation Observed Observed Not Observed Not Observed Not Observed Alteration in glycosylation identified in
Only in IFN- Boosted in PBMCs [36]
a-positive IFN-a-positive No information in B cells is available
patients patients
Schlafen protein Observed Observed Not Observed Not Observed Not Observed Protein with unknown function in the
Boosted in Boosted in T cells
IFN-a-positive IFN-a-positive Has not been identified in B cells before
patients patients

role for LPA in SLE pathogenesis. The intersection between the genes
upregulated in SLE and in IFN-a-positive SLE indicated that only INPP1
is affected by IFN-a. This observation is consistent with the increased
lysophospholipids, which bind to and activate LPAR6 on B cells, and
validates the restricted upregulation of the LPA receptor LPAR6 in SLE B
cells. Moreover, lysophospholipids were among the top negative con-
tributors in Factors 2 and 4 of the MOFA, which separate CTRL and SLE
samples. LPAR6 is a novel LPA receptor whose function is not yet
known, but similar receptor LPAR5 suggest an immunomodulatory role
in B cells and autoimmunity [34].

Protein glycosylation was also altered in SLE [36]. In the whole-
blood transcriptome, enrichment in asparagine N-linked and sialic
acid glycosylation were found, whereas B cells of IFN-a-positive patients
with SLE showed upregulation in glycosylation enzymes such as the
sialyltransferase ST3GAL6. Recently, our research group validated the
protein glycosylation changes within SLE B cells [47]. LINC00487 is a
long non-coding RNA associated with Sjogren’s syndrome disease ac-
tivity [48], induced by IFN-a and involved in B cell dysregulation. In the
present study, it was found to be upregulated in both PRECISESADS B-
cell and whole-blood transcriptome datasets and in B-cell validation
dataset. Moreover, in SLE whole blood, it was weakly correlated with
the lupus activity score (Pearson correlation coefficient = 0.16, p =
0.0026). This suggests that IFN-a signalling causes an alteration in
glycosylation and long non-coding RNA over metabolism [49].

Finally, many Schlafen family members were identified in the pre-
sent study. These were recently discovered in T cells, but their function
remains unclear [50]. In the PRECISESADS and validation B-cell tran-
scriptome datasets from IFN-a-positive patients with SLE, SLFN5 and
SLFN12L were upregulated, suggesting for the first time a role of IFN-a
in their expression in B cells, as is known for T cells [51].

According to the top genes and metabolomic peaks and the clinical

features highlighted with the MOFA analyses, Factor 4 incorporated the
IFN-a changes, observed both in B-cell and whole-blood transcriptome
contributors, which were confirmed by the correlation with IFN-
a-induced cytokine and autoantibody production in clinical data. Factor
2 was linked to inflammation and antigen presentation. It was positively
correlated with the diagnosis age of SLE, suggesting a change in these
processes driven by age, likely due to the development of autoimmunity.
Factor 5 was associated with reactive oxygen species (ROS) catabolism
in whole blood, leading to apoptosis and with a reduction in mRNA
maturation in B cells. It distinguishes patients with puffy fingers (dac-
tylitis), suggesting a direct or indirect stress-oxidative role in this
inflammation. Factor 9 was linked to interleukin and neutrophil
inflammation in whole blood, without associations with clinical data.
Overall, MOFA factors caught different aspects of the disease and iso-
lated them. MOFA provided a way to identify, biological changes and
clinical events driven by the same altered process, such as interferon
(Factor 4), physiological antigen recognition (Factor 2), stress (Factor 5)
and neutrophils (Factor 9). Among the described factors, the 4th was
related to patients with the worst prognosis, as high levels of Factor 4
were correlated to higher levels of autoantibodies and more severe
disease. Factor 5 linked the ROS production in whole blood with the
puffy fingers, suggesting that ROS are mechanism by which stress can
lead to this clinical inflammation, as already previously suspected [52].

To our knowledge, this is the first exploratory analysis that attemp-
ted to integrate the omics data of SLE using MOFA. Limitation of this
study included the low MOFA efficiency in catching biological vari-
ability when exploring metabolomics data, that are not naturally linear.
It favors transcriptomics contribution in the results, excluding the ma-
jority of the metabolomics variability in MOFA factors. Further experi-
ments targeting enzymes and receptors within the identified pathway
are required to elucidate the exact role of lysophosphatidic-acid
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signalling, glycosylation, and nucleotide salvage pathway changes in
SLE. It is noteworthy that this study represents a novel approach to the
investigation of SLE but also autoimmune diseases using multiple
sources of OMICS data, having the potential to provide a comprehensive
explanation of the underlying changes in the diseases.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.clim.2024.110243.
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